A Family of Adapted Complexifications for Noncompact Semisimple Lie Groups

نویسندگان

  • S. HALVERSCHEID
  • A. IANNUZZI
چکیده

The maximal complexifications adapted to the Levi Civita connection for a distinguished one-parameter family of left-invariant metrics on a real, non-compact, semisimple Lie group G are determined. For G = SL2(R) their realization as invariant Riemann domains over G = SL2(C) is carried out and their complex-geometric properties are investigated. One obtains new non-univalent, non-Stein examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Family of Adapted Complexifications for Sl 2 ( R )

Let G be a non-compact, real semisimple Lie group. We consider maximal complexifications of G which are adapted to a distinguished one-parameter family of naturally reductive, left-invariant metrics. In the case of G = SL 2 (R) their realization as equivariant Riemann domains over G C = SL 2 (C) is carried out and their complex-geometric properties are investigated. One obtains new examples of ...

متن کامل

Heinz-Kato’s inequalities for semisimple Lie groups

Extensions of Heinz-Kato’s inequalities and related inequalities are obtained for semisimple connected noncompact Lie groups. Mathematics Subject Index 2000: Primary 22E46; Secondary 15A45

متن کامل

Parabolic Subgroups of Semisimple Lie Groups and Einstein Solvmanifolds

In this paper, we study the solvmanifolds constructed from any parabolic subalgebras of any semisimple Lie algebras. These solvmanifolds are naturally homogeneous submanifolds of symmetric spaces of noncompact type. We show that the Ricci curvatures of our solvmanifolds coincide with the restrictions of the Ricci curvatures of the ambient symmetric spaces. Consequently, all of our solvmanifolds...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

New examples of non-symmetric Einstein solvmanifolds of negative Ricci curvature

We obtain new examples of non-symmetric Einstein solvmanifolds by combining two techniques. In Tamaru (Parabolic subgroups of semisimple Lie groups and einstein solvmanifolds. Math Ann 351(1):51–66, 2011) constructs new attached solvmanifolds, which are submanifolds of the solvmanifolds correspond to noncompact symmetric spaces, endowed with a natural metric. Extending this construction, we app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005